Demethoxycarbonylation of Methyl 2,5- and Methyl 3,6-Dialkyl-1H-azepine-1carboxylates: Formation and Characterization of $\mathbf{2 H}$-, $\mathbf{3 H}$ - and 4 H -Azepines

Kyosuke Satake,* Ryoichi Okuda, Michiaki Hashimoto, Yasusi Fujiwara, Hideki Okamoto, Masaru Kimura and Shiro Morosawa
Department of Chemistry, Faculty of Science, Okayama University, Tsushima-Naka 3-1-1, Okayama, 700, Japan

Abstract

Demethoxycarbonylation of methyl 2,5-di-tert-butyl-1H-azepine-1-carboxylate using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) gave 3 H -azepines. Under similar conditions, methyl 3.6 -di-tert-butyl-1H-azepine-1-carboxylate gave not only the 3 H -azepine but also the isomerized 2 H - and $4 H$-azepines. Application of the reaction to dimethyl and diisopropyl substituted $1 H$-azepines showed that bulky alkyl group substitution stabilizes the seven-membered azatriene system. The thermal behaviour of the di-tert-butyl substituted azepines is discussed.

Effective deprotection of nitrogen atom-protected $1 H$-azepines is of interest in connection with the behaviour of 1 H -azepine which can be regarded both as an anti-Hückel 8π-electron system and a nitrogen-containing seven-membered triene system. ${ }^{1}$ A MNDO ${ }^{2}$ molecular orbital calculation predicts that 3 H -azepine is more stable than 1 H -, 2 H - (6) or 4 H -azepine (8), related to 3 H -azepine 7 by the thermally allowed, 1,5 -hydrogen shift (Table 1). Owing to their instability, the chemical and physical properties of azepines have yet to be experimentally determined. The elegant conversion of methyl 1 H -azepine-1carboxylate into the 3 H -azepine was accomplished by Vogel et al. with iodotrimethylsilane as a demethoxycarbonylating agent, the product being characterized by low-temperature NMR spectroscopy. ${ }^{16}$ Earlier, we reported the indirect conversion of methyl 2,5 - 2 a and 3,6-di-tert-butyl-1 H -azepine-1carboxylates 3a into the correspondingly substituted 3 H azepines 4 a and 7a via 3 H -cyclobuta $[b]$ pyrrole derivatives such as 12. ${ }^{3}$ Nitta et al. have also reported the synthesis of 3-cyclohepta-2,4,6-trienyl-3H-azepine via an iron carbonyl complex of ethyl 1 H -azepine-1-carboxylate and presented the first example of 1,5 -hydrogen shift in the azepine ring system. ${ }^{4}$

We report here an alternative direct synthesis not only of 3 H azepines but also 2 H - and 4 H -azepines from methyl 2,5-2a and methyl 3,6 -di-tert-butyl-1 H-azepine-1-carboxylates 3 a by means of demethoxycarbonylation with 1,8 -diazabicyclo-[5.4.0]undec-7-ene (DBU), together with observations of the characteristic thermal behaviour of the seven-membered azatriene system. ${ }^{5}$ Diisopropyl and dimethyl derivatives of methyl $1 H$-azepine-1-carboxylates $2 \mathbf{b}$, \mathbf{c} and 3 b , \mathbf{c} were also subjected to the demethoxycarbonylation described.

Results and Discussion

Preparation of Methyl 1H-Azepine-1-carboxylate Derivatives 2a-c and 3a-c.-The procedure for the preparation of the methyl 1 H -azepine-1-carboxylate derivatives follows that reported by Hafner et al. ${ }^{1 a}$ and Lwowski et al. ${ }^{6} p$-Di-tertbutylbenzene 1a, p-diisopropylbenzene $\mathbf{1 b}$ and p-xylene 1c were heated with methyl azidoformate ($0.2-0.5$ equiv.) at $125^{\circ} \mathrm{C}$, respectively (see Scheme 1). Careful separation of each reaction mixture by preparative medium-pressure liquid-chromatography (MPLC) gave methyl 2,5-disubstituted and 3,6-disubstituted $1 H$-azepine-1-carboxylates 2a-c and 3a-c in each case. Product identities were established by comparison of authentic data for 2,5-di-tert-butyl-, ${ }^{3,7}$ 3,6-di-tert-butyl-, ${ }^{3,7}$ 2,5-di-methyl-, ${ }^{8}$ and 3,6-dimethyl-1 H -azepines ${ }^{9}$ for 2a, 3a, 2c and 3c, respectively. The hitherto unknown 2,5 -diisopropyl- and 3,6-

Table 1 Calculated MNDO relative energies $\left(\Delta H_{f} s\right)$ for 2 H -, 3 H - and 4 H -azepines based on H_{f} of 1 H -azepine
$\Delta H_{4} / \mathrm{kJ} \mathrm{mol}^{-1 \mathrm{a}}$
$\mathrm{R}=\mathrm{H} \quad 0.0$
$\mathrm{R}=\mathrm{Bu}^{t} \quad 0.0$
${ }^{a}$ The MNDO calculations were performed by complete geometry optimizations for all the compounds. For $1 H$-azepine, a plane of symmetry passing through nitrogen and the centre of the C-4 and C-5 double bond is maintained during optimization sequence. ${ }^{b}$ The two relative energies were calculated for the two isomers, the structure of which are shown below, of 3,6-di-tert-butyl-3 H -azepine \mathbf{A} and \mathbf{B} (upper for \mathbf{A} and lower for \mathbf{B}).

A

B
diisopropyl-1 H -azepine-1-carboxylates 2b and 3b were identified by comparing their ${ }^{1} \mathrm{H}$ NMR and electronic spectra with those of the analogous 1 H -azepine derivatives $2 \mathrm{a}, \mathbf{c}$ and $3 \mathrm{a}, \mathbf{c}$.

Demethoxycarbonylation with DBU.-A solution of methyl $1 H$-azepine-1-carboxylate derivative and DBU in dry nitrogenpurged xylene was refluxed under a nitrogen stream for $5-6 \mathrm{~h}$. After cooling, the reaction mixture was introduced into a silica gel column in order to eliminate the excess of DBU and the polymeric compounds formed. From this eluent, the demethoxycarbonylated products were obtained by preparative MPLC on a silica gel column (see Scheme 1).
(a) Di-tert-butyl derivatives. The reaction of methyl 2,5 -di-tert-butyl-1 H -azepine-1-carboxylate 2a gave $2,5-4 \mathrm{a}$ and 4,7 -di-tert-butyl- 3 H -azepines 5 a. Under similar conditions, methyl 3,6-di-tert-butyl-1 H -azepine-1-carboxylate 3a gave 3,6-di-tertbutyl substituted $2 \mathrm{H}-6 \mathrm{a}, 3 \mathrm{H}-7 \mathrm{a}$, and 4 H -azepine 8 a . The azepines $4 \mathbf{a}$ and 7 a were identical with those previously reported. ${ }^{3}$ The new 4,7 -di-tert-butyl- 3 H -azepine 5 a was readily

Scheme 1 Reagents and conditions: i, $\mathrm{N}_{3} \mathrm{CO}_{2} \mathrm{Me}, 125^{\circ} \mathrm{C}$; ii, DBU, xylene
characterized by comparing the values of the coupling constants (Hz) for its AB-quartet ($J_{5,6} 6.7$) and their chemical shifts ($\delta_{5-\mathrm{H}}$ 6.14 and $\delta_{6-\mathrm{H}} 6.06$) with those of $4 \mathrm{a}\left(J_{6,7} 8.5, \delta_{6-\mathrm{H}} 6.28\right.$ and $\delta_{7-\mathrm{H}}$ 7.28). The structure of 3,6 -di-tert-butyl- 2 H - 6 a and 3,6 -di-tert-butyl- 4 H -azepines 8a were also elucidated by reference to the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the previously obtained 3 H azepines 4a, 5a and 7a. Assignments of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all the di-tert-butylazepines (see Table 2) were based on ${ }^{1} \mathrm{H}$-COSY and ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ correlation (HETCOR) measurements.

Use of N -ethoxycarbonyl derivatives instead of 2a or 3a, gave complete recovery of the starting materials no reaction having occurred. With the N-methoxycarbonyl derivatives, the reaction initially proceeds by effective demethylation of the methoxycarbonyl group with the strong base (DBU), ${ }^{10}$ followed by decarboxylation to give 3 H -azepines.
(b) Diisopropyl derivatives. With methyl 2,5 -diisopropyl-1 H -azepine-1-carboxylate $\mathbf{2 b}$, reaction gave the $2,5-4 \mathbf{b}$ and 4,7 diisopropyl 3 H -azepines $5 \mathbf{b}$, analogously to $2 \mathbf{2 a}$, use of the 3,6diisopropyl isomer 3b as starting material gave 3,6-diisopropyl3 H -azepine 7 b with no simultaneous formation of 2 H - and 4 H azepine isomers; it thereby differed from the reaction with the correspondingly substituted di-tert-butyl-1 H -azepine 3 a .
(c) Dimethyl derivatives. Labile 2,5-dimethyl- 4c and 3,6-dimethyl- 3 H -azepines 7 c were also obtained from methyl 2,5 -dimethyl- 2c and methyl 3,6-dimethyl-1 H -azepine-1-carboxylates, $\mathbf{3 c}$, respectively. In order to purify the dimethyl derivatives, the reaction mixture was passed through the silica gel column at $-2^{\circ} \mathrm{C}$ to prevent the degradation of the dimethyl- 3 H -azepine formed. Although the solution of dimethyl- 3 H -azepines is stable for at least 6 h even at room temperature, the solvent-free compounds became dark brown with degradation or polymerization within 30 min at room temperature.

Thermal Behaviour of Azepines 4a, 5a, 6a and 7a.-In connection with the simultaneous formation of $4 a$ and $5 a$ from $1 H$-azepine 2a, we examined the possibility of thermal
isomerization between $\mathbf{4 a}$ and 5 a . The reason for the formation of $4 a$ and $5 a$ might be considered to be a thermally allowed 1,5 hydrogen shift between the two. Under the demethoxycarbonylation conditions employed, neither 4a nor 5a gave the complementary isomers 5 a and 4 a , respectively. However, when a benzene solution of 5 a was heated in a sealed glass tube for 2 h at $175^{\circ} \mathrm{C}$, the previously reported temperature at which the 1,5 -hydrogen shift occurs in a cycloheptatriene system, ${ }^{11}$ the isomer 4 a was obtained only in 9% yield. On the other hand, the isomerization from 4 a to $5 \mathrm{5a}$ was not observed under these conditions (see Scheme 2). Earlier, we reported the results

Scheme 2 Reagents and conditions: i, $175^{\circ} \mathrm{C}$; ii, $\mathrm{C}_{6} \mathrm{H}_{6}, 125^{\circ} \mathrm{C}$; iii, DBU, xylene
of a kinetic study in which the thermal reaction of 2,4-di-tert-butyl-3a,5a-dihydro- 3 H -cyclobuta[b]pyrrole 12 in benzene at $150^{\circ} \mathrm{C}$ gave 3 H -azepine 4 a as a single product by a disrotatory cyclobutene ring-opening mechanism. ${ }^{3}$ When a xylene solution of 12 and DBU was heated to reflux for 4 h , ring-opening also occurred to give the 3 H -azepines 4 a and 5a simultaneously in a similar ratio to that obtained from the demethoxycarbonylation reaction of 2a (see Scheme 2). This indicates that the mechanism for the isomerization of cyclobuta $[b]$ pyrrole 12 using DBU is different from that of the thermal isomerization. It can be considered that the cyclobutene ring-opening proceeds via an allylic DBUdeprotonated anion 13 forming the anion 9 (see Scheme 3). The same products and in a comparable ratio in both the reaction of 12 and 3a implies a common intermediate leading to 4 a and 5 a . The results obtained suggest that the simultaneous formation of the 3 H -azepine isomers 4 a and 5 a is not the result of a 1,5 -hydrogen shift but rather arises from the competitive prototropy of the intermediate 1 H -azepine or its anion 9 under the demethoxycarbonylation conditions presented (see Scheme 3).
In contrast, the 1,5 -hydrogen shift was observed between 3,6-di-tert-butylazepines 6a, 7a and 8a. When heated at $125^{\circ} \mathrm{C}$ in toluene for $5 \mathrm{~h}, 2 \mathrm{H}$ - 6a or 3 H -azepines 7 a were converted quantitatively into an azepine mixture consisting of $2 \mathrm{H}-6 \mathrm{a}, 3 \mathrm{H}-$ 7a and 4 H -azepines 8a (12:51:1 from 2 H -azepine 6 a or $12: 56: 1$ from 3 H -azepine 7a) (see Scheme 4). This result shows that the distribution of azepine isomers is proportional to their relative thermal stabilities as they interconvert via the thermally allowed 1,5-hydrogen shift, although the MNDO calculated H_{f} values (see Table 1) are not reflected in the observed distribution ratios. The difference in the thermal behaviour between 2,5- or 4,7-di-tert-butylazepines and 3,6-di-tert-butylazepines and between

Table $2{ }^{1} \mathrm{H}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(125 \mathrm{MHz})$ NMR data for ring protons and carbons of azepines 4-8a in CDCl_{3}

		δ											J / Hz
		C-2	C-3	C-4	C-5	C-6	2-H	3-H	4-H	5-H	6-H	7-H	
2H-form	6a	52.2	150.6	119.1	128.6	158.7	3.5	-	6.09	6.60	-	7.91	$J_{4.5} 6.2$
													$J_{5.7} 1.9$
3H-forms	4a	164.0	32.4	110.0	147.3	139.7	-	1.1	5.03	-	6.28	7.28	$J_{3.4} 7.0$ $J_{6.7} 8.5$
	5a	136.4	35.1	136.8	118.6	160.1	6.50	1.1	-	6.14	6.06	-	$J_{2.3} 5.0$
								3.6					$J_{5.6} 6.7$
	7a	139.6	54.3	116.5	125.5	135.4	6.46	0.79	5.17	6.43	-	7.44	$J_{2.3} 4.8$
													$J_{3.4} 5.9$
													$J_{3.5} 1.7$
													$J_{4.5} 9.4$
													$\begin{array}{llll}J_{5.7} & 1.9\end{array}$
4H-form	8a	130.7	140.9	26.4	125.6	160.1	6.73	-	2.05	5.54	-	8.55	
													$J_{5.7} 2.1$

Scheme 3 Reagents: i, DBU; ii, H $^{+}$

Scheme 4 Reagents and conditions: i, toluene, $125^{\circ} \mathrm{C}, 5 \mathrm{~h}$
3,6-di-tert-butylazepine and 3,6-diisopropylazepine is not as yet clear.

Conclusions

Efficient demethoxycarbonylation of dimethyl, diisopropyl and di-tert-butyl substituted N-methoxycarbonyl-1 H -azepines 2a-c and 3a-c occurs when they are heated in xylene with DBU. The introduction of a bulky alkyl group into the 3 H -azepine ring stabilizes the system and permits its isolation and further treatment. The evidence presented relating to the thermal behaviour of 3,6 -di-tert-butyl substituted azepine indicates that the thermally allowed 1,5-hydrogen shift occurs to give an isomerized azepine mixture. Further efforts to clarify the features of the seven-membered azatriene system are underway in our laboratory.

Experimental

M.p.s were determined with a Yanagimoto micromelting point apparatus and are uncorrected. Silica gels HF_{254} (Merck) for TLC and Woelm 32-63 for preparative MPLC were used. IR spectra were recorded on a JASCO FT-IR 5000 spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were measured on a Varian XL200 or XL- 500 spectrometer. J Values are given in Hz . Electronic spectra were recorded on a Hitachi 288 spectrophotometer. Mass spectrometry was performed on a JEOL JMS-DX300 mass spectrometer coupled to the JMA-3100 data analysis system at the Department of Chemistry, College of Liberal Arts and Science, Okayama University. Elemental analyses were performed on a Yanagimoto MT-2 CHN-corder. The molecular orbital (MNDO) calculation was carried out on a NEC ACOS-2000 computer of Okayama University Computer Center.

Preparation of Methyl 2,5- and Methyl 3,6-Diisopropyl-1H-azepine-1-carboxylates 2b and 3b.-Methyl azidoformate (15 g , 0.15 mol) was added dropwise, with efficient stirring, to hot p diisopropylbenzene $1 \mathrm{~b}(50 \mathrm{~g}, 0.31 \mathrm{~mol})$ at $130^{\circ} \mathrm{C}$ over 90 min , and the resulting solution was stirred at this temperature until the evolution of nitrogen ceased. After cooling excess of 1 b was removed from the brownish residue (26 g) by distillation under reduced pressure. The new residue was chromatographed (ethyl acetate-hexane 85: 15, v/v) on silica gel to give a yellow oil (11.5 g). From 5.0 g of the yellow oil, $1 H$-azepines $2 \mathrm{~b}(950 \mathrm{mg}, 6.5 \%)$ a pale yellow oil (Found: C, 71.5; H, 9.2; N, 6.0. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $\mathrm{C}, 71.5 ; \mathrm{H}, 9.0 ; \mathrm{N}, 5.95 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1722,1648$ and 1635; $\lambda_{\text {max }}$ (cyclohexane) $/ \mathrm{nm} 215\left(\log \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$ 4.27) and $292(3.20) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.10(12 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ 7.2), 2.39 (1 H , hept, $J 7.2$), 2.89 (1 H , br hept, $J 7.2$), 3.62 (3 H , s) and $5.8(4 \mathrm{H}, \mathrm{m}) ; m / z 235\left(\mathrm{M}^{+}\right)$and 220 , and $3 \mathrm{~b}(790 \mathrm{mg}$, 5.4%), a pale yellow oil (Found: C, 71.7; H, 9.3; N, 6.0 . $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $\left.\mathrm{C}, 71.5 ; \mathrm{H}, 9.0 ; \mathrm{N}, 5.95 \%\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$

1722, 1665 and 1637; $\lambda_{\max }$ (cyclohexane) $/ \mathrm{nm} 215\left(\log \varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 4.30$) and $240(\mathrm{sh}, 3.40)$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.04 ($12 \mathrm{H}, \mathrm{d}, J 7.2$), $2.37(2 \mathrm{H}$, hept, $J 7.2), 3.67(3 \mathrm{H}, \mathrm{s}), 5.71$ $(2 \mathrm{H}, \mathrm{br} \mathrm{s})$ and $6.07(2 \mathrm{H}, \mathrm{s}) ; m / z 235\left(\mathrm{M}^{+}\right)$and 220 , were obtained by means of MPLC using ethyl acetate-hexane $(1: 10)$ as eluent.

Synthesis of 2,5- and 4,7-Di-tert-butyl-3H-azepines 4a and 5a.-A solution of 1 H -azepine $2 \mathrm{a}(2.0 \mathrm{~g}, 7.6 \mathrm{mmol})$ and DBU $(12 \mathrm{~g}, 78 \mathrm{mmol})$ in nitrogen-purged dry xylene $\left(12 \mathrm{~cm}^{3}\right)$ was refluxed under a nitrogen stream for 6 h . After cooling, the reaction mixture was introduced into a silica gel column and eluted with ethyl acetate-hexane (1:4). The eluent was concentrated and chromatographed again on silica gel (Woelm $32-63$) by MPLC to give 3 H -azepines 4 a ($843 \mathrm{mg}, 54 \%$), colourless needles, m.p. $20.5-21^{\circ} \mathrm{C}$, and $5 \mathrm{5a}$ ($343 \mathrm{mg}, 22 \%$), colourless needles, m.p. $41-42^{\circ} \mathrm{C}$ (Found: C, $82.0 ; \mathrm{H}, 11.1 ; \mathrm{N}$, 7.0. $\mathrm{C}_{14} \mathrm{H}_{23}$ Nrequires $\mathrm{C}, 81.9 ; \mathrm{H}, 11.3 ; \mathrm{N}, 6.8 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1595(\mathrm{C}=\mathrm{N}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 237\left(\log \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 3.76\right)$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.10(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.13(9 \mathrm{H}, \mathrm{s}), 1.20(9 \mathrm{H}, \mathrm{s})$, $3.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.06(1 \mathrm{H}, \mathrm{d}, J 6.7), 6.14(1 \mathrm{H}, \mathrm{d}, J 6.7)$ and 6.50 ($1 \mathrm{H}, \mathrm{t}, J 5.0$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 29.5 (q), 29.7 (q), 35.1 (t), 35.2 (s), 36.4 (s), 108.9 (d), 118.6 (d), 136.4 (d), 136.8 (s) and 160.1 (s).

Synthesis of 3,6-Di-tert-butyl-2H-, 3H- and 4H-azepines 6a, 7a and $8 \mathrm{8a}$.-Similarly, a solution of 1 H -azepine $3 \mathrm{a}(2.74 \mathrm{~g}, 10.4$ mmol) and DBU ($15.8 \mathrm{~g}, 104 \mathrm{mmol}$) in nitrogen-purged dry xylene ($17 \mathrm{~cm}^{3}$) gave 3 H -azepine $7 \mathrm{a}(988 \mathrm{mg}, 46 \%)$ as colourless prisms, m.p. $57.5-58.5^{\circ} \mathrm{C}, 4 \mathrm{H}$-azepine $8 \mathrm{a}(27 \mathrm{mg}, 1.3 \%$), a pale yellow oil (Found: C, 82.1; H, 11.3; N, 6.7. $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}$ requires C, $81.9 ; \mathrm{H}, 11.3 ; \mathrm{N}, 6.8 \%$); $v_{\text {max }}($ (neat $) / \mathrm{cm}^{-1} 1603$ (C=N); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 241\left(\log \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 3.37\right)$ and 313 (3.09); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.10(18 \mathrm{H}, \mathrm{s}), 2.05(2 \mathrm{H}, \mathrm{d}, J 7.3), 5.54$ $(1 \mathrm{H}, \mathrm{dt}, J 2.1$ and 7.3$), 6.73(1 \mathrm{H}, \mathrm{s})$ and $8.55(1 \mathrm{H}, \mathrm{d}, J 2.1)$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 26.4(\mathrm{t}), 29.5(\mathrm{q}), 29.8(\mathrm{q}), 33.7(\mathrm{~s}), 34.6(\mathrm{~s})$, 125.6 (d), 130.7 (d), 140.9 (s) and 160.1 (s), and 2 H -azepine 6 a ($241 \mathrm{mg}, 11 \%$) as colourless plates, m.p. $68.5-69{ }^{\circ} \mathrm{C}$ (Found: C, 81.9; H, 11.55; N, 6.8. $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}$ requires C, 81.9; H, 11.3; $\mathrm{N}, 6.8 \%) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1620(\mathrm{C}=\mathrm{N}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 246$ $\left(\log \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 3.67\right)$ and 302 (3.38); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.17(9 \mathrm{H}, \mathrm{s}), 1.22(9 \mathrm{H}, \mathrm{s}), 3.50(2 \mathrm{H}, \mathrm{br}), 6.09(1 \mathrm{H}, \mathrm{d}, J$ $6.2), 6.60(1 \mathrm{H}, \mathrm{dd}, J 6.2$ and 1.9$)$ and $7.91(1 \mathrm{H}, \mathrm{d}, J 1.9) ; \delta_{\mathrm{C}}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 29.3 (q), 30.5 (q), 34.8 (s), 35.7 (($), 52.2$ (t), 119.1 (d), 128.6 (d), 150.6 (s) and 158.7 (s) in this sequence.

Synthesis of 2,5- and 4,7-Diisopropyl-3H-azepines 4b and $\mathbf{5 b}$.-A solution of 1 H -azepine $\mathbf{2 b}(460 \mathrm{mg}, 2.0 \mathrm{mmol})$ and DBU ($3 \mathrm{~g}, 20 \mathrm{mmol}$) in nitrogen-purged dry xylene ($4 \mathrm{~cm}^{3}$) was refluxed under a nitrogen stream for 5 h and then worked up by the above described treatment for 4 a and 5 a to give 3 H -azepines 4 b ($157 \mathrm{mg}, 45 \%$), a pale yellow oil (Found: C, 81.1 ; H, 10.5; N, 7.75. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}$ requires $\mathrm{C}, 81.3 ; \mathrm{H}, 10.8 ; \mathrm{N}, 7.9 \%$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1610(\mathrm{C}=\mathrm{N}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 237\left(\log \varepsilon / \mathrm{dm}^{3}\right.$ $\left.\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 3.59\right)$ and $260(3.62) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.1(1 \mathrm{H}$, m), $1.02(6 \mathrm{H}, \mathrm{d}, J 6.8), 1.11(6 \mathrm{H}, \mathrm{d}, J 6.8), 2.43(1 \mathrm{H}$, hept, J 6.8), 2.56 (1 H , hept, $J 6.8$), $4.93(1 \mathrm{H}, \mathrm{t}, J 6.6), 6.09(1 \mathrm{H}, \mathrm{d}, J$ $8.4)$ and $7.25(1 \mathrm{H}, \mathrm{d}, J 8.4)$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.0(\mathrm{q}), 33.4$ (d), 33.8 (t), 37.2 (d), 110.1 (d), 116.8 (d), 140.0 (s), 145.0 (s) and 160.5 (s), and 5 b ($47 \mathrm{mg}, 13 \%$), a pale yellow oil (Found: C, 81.1; $\mathrm{H}, 10.7 ; \mathrm{N}, 7.8 . \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}$ requires $\mathrm{C}, 81.3 ; \mathrm{H}, 10.8 ; \mathrm{N}, 7.9 \%$); $\nu_{\max }($ neat $) / \mathrm{cm}^{-1} 1591(\mathrm{C}=\mathrm{N}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 238\left(\log \varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 3.88$) and 280 sh (3.45); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $1.0(1$ H, m), 1.06 ($6 \mathrm{H}, \mathrm{d}, J 6.8$), 1.13 ($6 \mathrm{H}, \mathrm{d}, J 6.8$), 2.49 (1 H , hept, J 6.8), $2.64(1 \mathrm{H}$, hept, $J 6.8)$, $3.4(1 \mathrm{H}, \mathrm{br}), 5.99(1 \mathrm{H}, \mathrm{d}, J 6.3)$, $6.07(1 \mathrm{H}, \mathrm{d}, J 6.3)$ and $6.49(1 \mathrm{H}, \mathrm{t}, J 4.9) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 22.2 (q), 22.3 (q), 34.7 (d), 35.6 (d), 36.1 (t), 110.8 (d), 120.0 (d), 134.1 (s), 136.6 (d) and 157.7 (s), were obtained.

Synthesis of 3,6-Diisopropyl-3H-azepine 7b.-A solution of $1 H$-azepine 3b ($230 \mathrm{mg}, 0.98 \mathrm{mmol}$) and DBU $(1.7 \mathrm{~g}, 110 \mathrm{mmol})$ in nitrogen-purged dry xylene ($2 \mathrm{~cm}^{3}$) was refluxed for 5 h , after which the reaction mixture was treated as described before. MPLC gave 3 H -azepine 7 b ($74 \mathrm{mg}, 43 \%$), as a pale yellow oil (Found: C, 80.1; H, 11.0; N, 7.7. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}$ requires $\mathrm{C}, 81.3 ; \mathrm{H}$, $10.8 ; \mathrm{N}, 7.9 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1583(\mathrm{C}=\mathrm{N}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm}$ $230\left(\log \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 3.61\right)$ and 266 (sh, 3.44); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.85(1 \mathrm{H}, \mathrm{m}), 1.08(3 \mathrm{H}, \mathrm{d}, J 6.8), 1.11(3 \mathrm{H}, \mathrm{d}, J 6.8), 1.12$ (3H, d, J6.8), 1.18 (d, $3 \mathrm{H}, J 6.8$), $2.13(1 \mathrm{H}, \mathrm{m}), 2.59(1 \mathrm{H}$, hept, J $6.8), 5.07(1 \mathrm{H}, \mathrm{dd}, J 9.1$ and 5.7$), 6.27(1 \mathrm{H}$, ddd, $J 9.1$, 1.7 and 1.7), $6.30(1 \mathrm{H}, \mathrm{d}, J 4.9)$ and $7.32(1 \mathrm{H}, \mathrm{d}, J 1.7)$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.5(\mathrm{q}), 20.8(\mathrm{q}), 23.4$ (q), $23.7(\mathrm{q}), 28.4$ (d), 33.9 (d), 51.9 (d), 118.1 (d), 125.7 (d), 136.8 (s), 136.9 (d) and 139.7 (d).

Synthesis of 2,5-Dimethyl-3H-azepine $\mathbf{4 c}$.-The dark brown reaction mixture obtained from the reaction of 1 H -azepine $\mathbf{2 c}$ $(143 \mathrm{mg}, 0.80 \mathrm{mmol})$ and DBU $(1.21 \mathrm{~g}, 8.0 \mathrm{mmol})$ was heated to reflux in nitrogen-purged dry xylene ($2 \mathrm{~cm}^{3}$) solution for 5 h . The reaction mixture was cooled and introduced into a silica gel column, which was operated in a refrigerator room maintained at $-2^{\circ} \mathrm{C}$, and eluted with ethyl acetate-hexane ($1: 4$). Evaporation at $0^{\circ} \mathrm{C}$ of the eluent under reduced pressure gave a labile $3 H$-azepine $4 \mathrm{c}(43 \mathrm{mg}, 44 \%)$, as a pale yellow oil; $\nu_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1605(\mathrm{C}=\mathrm{N}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 235\left(\log \varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 3.53$) and $250(3.55) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.88$ (3 $\mathrm{H}, \mathrm{s}), 2.0(2 \mathrm{H}, \mathrm{br}), 2.12(3 \mathrm{H}, \mathrm{s}), 4.99(1 \mathrm{H}, \mathrm{t}, J 6.8), 5.99(1 \mathrm{H}$, $\mathrm{d}, J 8.3$) and $7.15(1 \mathrm{H}, \mathrm{d}, J 8.3)$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.0$ (q), 20.9 (q), 26.3 (q), 37.2 (t), 112.5 (d), 119.2 (d), 135.5 (d), 139.7 (s) and 151.6 (s).

Synthesis of 3,6-Dimethyl-3H-azepine 7c.-A solution of $1 H$-azepine $3 \mathrm{c}(103 \mathrm{mg}, 0.56 \mathrm{mmol})$ and DBU ($860 \mathrm{mg}, 5.7$ $\mathrm{mmol})$ in nitrogen-purged dry xylene $\left(2 \mathrm{~cm}^{3}\right)$ when treated as described above gave the 3 H -azepine $7 \mathrm{c}(17.1 \mathrm{mg}, 25 \%$), as a pale yellow oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1605(\mathrm{C}=\mathrm{N}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ $232\left(\log \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 3.64\right)$ and $250(3.49) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.2(1 \mathrm{H}, \mathrm{m}), 1.52(3 \mathrm{H}, \mathrm{d}, J 6.5), 2.05(3 \mathrm{H}, \mathrm{s}), 4.88(1 \mathrm{H}$, dd, $J 8.9$ and 5.3), $6.13(1 \mathrm{H}$, dd, $J 8.9$ and 1.8$), 6.20(1 \mathrm{H}, \mathrm{d}, J 6.2)$ and $7.29(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 15.9(\mathrm{q}), 21.1(\mathrm{q}), 38.8(\mathrm{~d})$, 120.6 (d), 126.5 (d), 128.4 (d), 139.1 (s) and 141.7 (s), a compound more labile than $\mathbf{4 c}$.

Reaction of 2,4-Di-tert-butyl-3a,5a-dihydro-3H-cyclobuta[b]pyrrole 12 with DBU.-A solution of 2,4-di-tert-butyl-3a,5a-dihydro-3 H -cyclobuta[b]pyrrole 12 ($57 \mathrm{mg}, 0.28 \mathrm{mmol}$) and DBU ($100 \mathrm{mg}, 0.66 \mathrm{mmol}$) in dry xylene ($1 \mathrm{~cm}^{3}$) was refluxed under a nitrogen stream for 4 h . After cooling, a similar procedure to the demethoxycarbonylation of 2a gave 3 H -azepines $4 \mathrm{a}(30 \mathrm{mg}, 52 \%$) and $5 \mathrm{a}(10 \mathrm{mg}, 18 \%$).

Thermal Isomerization Reaction of 3,6-Di-tert-butyl-2H- and 3 H -azepines 6 a and 7 a .-The respective xylene $\left(1.5 \mathrm{~cm}^{3}\right)$ solutions of $2 H$-azepine 6 a ($100 \mathrm{mg}, 0.49 \mathrm{mmol}$) and $3 H$ azepine $7 \mathrm{a}(100 \mathrm{mg}, 0.49 \mathrm{mmol})$ were refluxed for 5 h under a nitrogen stream, and the resulting reaction mixtures were chromatographed on silica gel (Woelm 32-64) by MPLC. Compound 6 a and 7 a gave mixtures of $\mathbf{6 a}(18 \mathrm{mg}), 7 \mathrm{a}(76 \mathrm{mg})$ and $8 \mathrm{aa}(1.5 \mathrm{mg})$, and $6 \mathrm{a}(17 \mathrm{mg}), 7 \mathrm{a}(78 \mathrm{mg})$ and $8 \mathrm{a}(1.4 \mathrm{mg})$, respectively.

Acknowledgements

We thank the SC-NMR Laboratory of Okayama University for the 500 and $200 \mathrm{MHz}^{1} \mathrm{H}$ NMR and 125 and $50 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR measurements.

References

1 (a) K. Hafner and C. König, Angew. Chem., 1963, 75, 89; K. Hafner, Angew. Chem., Int. Ed. Engl., 1964, 3, 165; (b) E. Vogel, H. J. Altenbach, J. M. Drossard, H. Schmickler and H. Stegelmeier, Angew. Chem., Int. Ed. Engl., 1980, 19, 1016; (c) J. Kao, J. Comput. Chem., 1988, 9, 905.
2 M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 1977, 99, 4899.
3 K. Satake, H. Saitoh, M. Kimura and S. Morosawa, J. Chem. Soc., Chem. Commun., 1988, 1121; K. Satake, H. Saitoh, M. Kimura and S. Morosawa, Heterocycles, 1994, 38, 769.

4 M. Nitta, K. Shibata and M. Miyano, Heterocycles, 1989, 29, 253.

5 Preliminary communication of this work: K. Satake, R. Okuda, M. Hashimoto, Y. Fujiwara, I. Watadani, H. Okamoto, M. Kimura and S. Morosawa, J. Chem. Soc., Chem. Commun., 1991, 1154.

6 W. Lwowski, T. J. Mericich and T. W. Mattingly, J. Am. Chem. Soc., 1963, 85, 1200.
7 T. Kumagai, K. Satake, K. Kidoura and T. Mukai, Tetrahedron Lett., 1983, 24, 2275.
8 J. M. Photis, J. Heterocycl. Chem., 1970, 7, 1249; M. Mitani, T. Tsuchida and K. Koyama, Tetrahedron Lett., 1974, 1204.

9 L. A. Paquette, D. E. Kuhla, J. H. Barrett and R. J. Haluska, J. Org. Chem., 1969, 34, 2866.
10 E. J. Parish and D. M. Miles, J. Org. Chem., 1973, 38, 1223.
11 T. Nozoe, K. Takahashi and H. Yamamoto, Bull. Chem. Soc. Jpn., 1969, 42, 3277.

Paper 4/00709C
Received 4th February 1994
Accepted 7th March 1994

